Implementing Random Scan Gibbs Samplers I
نویسنده
چکیده
The Gibbs sampler, being a popular routine amongst Markov chain Monte Carlo sampling methodologies, has revolutionized the application of Monte Carlo methods in statistical computing practice. The performance of the Gibbs sampler relies heavily on the choice of sweep strategy, that is, the means by which the components or blocks of the random vector X of interest are visited and updated. We develop an automated, adaptive algorithm for implementing the optimal sweep strategy as the Gibbs. sampler traverses the sample space. The decision rules through which this strategy is chosen are based on convergence properties of the induced chain and precision of statistical inferences drawn from the generated Monte Carlo samples. As part of the development, we analytically derive closed form expressions for the decision criteria of interest and present computationally feasible implementations of the adaptive random scan Gibbs sampler via a Gaussian approximation to the target distribution. We illustrate the results and algorithms presented by using the adaptive random scan Gibbs sampler developed to sample multivariate Gaussian target distributions, and screening test and image data.
منابع مشابه
Comment: On Random Scan Gibbs Samplers
We congratulate the authors on a review of convergence rates for Gibbs sampling routines. Their combined work on studying convergence rates via orthogonal polynomials in the present paper under discussion (which we will denote as DKSC from here onward), via coupling in Diaconis, Khare and SaloffCoste (2006), and for multivariate samplers in Khare and Zhou (2008), enhances the toolbox of theoret...
متن کاملSurprising Convergence Properties of Some Simple Gibbs Samplers Under Various Scans
We examine the convergence properties of some simple Gibbs sampler examples under various scans. We find some surprising results, including Gibbs samplers where deterministic-scan is much more efficient than random-scan, and other samplers where the opposite is true. We also present an example where the convergence takes precisely the same time with any fixed deterministic scan, but modifying t...
متن کاملGeometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models
We consider two Bayesian hierarchical one-way random effects models and establish geometric ergodicity of the corresponding random scan Gibbs samplers. Geometric ergodicity, along with a moment condition, guarantees a central limit theorem for sample means and quantiles. In addition, it ensures the consistency of various methods for estimating the variance in the asymptotic normal distribution....
متن کاملSubsampling the Gibbs Sampler: Variance Reduction
Subsampling the output of a Gibbs sampler in a non-systematic fashion can improve the e ciency of marginal estimators if the subsampling strategy is tied to the actual updates made. We illustrate this point by example, approximation, and asymptotics. The results hold both for random scan and xed scan Gibbs samplers.
متن کاملImproving Gibbs Sampler Scan Quality with DoGS
The pairwise influence matrix of Dobrushin has long been used as an analytical tool to bound the rate of convergence of Gibbs sampling. In this work, we use Dobrushin influence as the basis of a practical tool to certify and efficiently improve the quality of a Gibbs sampler. Our Dobrushin-optimized Gibbs samplers (DoGS) offer customized variable selection orders for a given sampling budget and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007